Effectiveness of animal conditioning interventions in reducing human–wildlife conflict: a systematic map protocol


Human–wildlife conflict (HWC), is currently one of the most pressing conservation challenges. We restrict ourselves here to wildlife behaviour that is perceived to negatively impact social, economic or cultural aspects of human life or to negatively impact species of conservation concern. HWC often involves wild animals consuming anthropogenic resources, such as crops or livestock, either out of necessity (loss of habitat and natural prey) or as consequence of opportunistic behaviour. A variety of interventions are undertaken to reduce HWC, differing in practicability, costs and social acceptance. One such non-lethal intervention is animal conditioning, a technique to reduce conflict by modifying the behaviour of ‘problem’ animals long-term. Conditioning changes associations animals have with resources or behaviours. Both via ‘punishment’ of unwanted behaviour and ‘rewarding’ of alternative behaviour, researchers aim to make expression of unwanted behaviour relatively less desirable to animals. Despite the potential, however, studies testing conditioning interventions have reported seemingly contradictory outcomes. To facilitate reduction of HWC via conditioning, we thus need to better understand if and when conditioning interventions are indeed effective. With this systematic map we intend to make the global evidence base for conditioning of free-ranging vertebrates more accessible to practitioners, to identify potential evidence clusters and effect modifiers for a subsequent systematic review and to highlight evidence gaps for future research.


We will compile evidence, including grey literature, from bibliographic databases, online search engines, specialist sites and expert contacts. Where possible, a Boolean-style full search string will be used, including Intervention and Outcome search terms. Searches will be conducted in English. Search comprehensiveness will be evaluated with an a priori list of benchmark articles. We will base inclusion of articles on presence of quantitative data, subject identity, comparator and outcome. Inclusion consistency checks will be performed with 10% of the titles, abstracts and full texts. We will assess validity of the literature base on basis of study design and sample size. Finally, we will develop a searchable literature database and an interactive evidence atlas along with a narrative synthesis of the evidence.


Aversive conditioning, Conservation, Evidence synthesis, Learning, Positive reinforcement, Predator control, Problem animals, Problem behaviour, Training, Human–wildlife impact

In Progress