Effectiveness of ecotechnologies in agriculture for the recovery and reuse of carbon and nutrients in the Baltic and boreo-temperate regions: a systematic map

Background

Agriculture is the main sector responsible for nutrient emissions in the Baltic Sea Region and there is a growing pressure to identify cost-effective solutions towards reducing nitrogen and phosphorus loads originating from farming activities. Recycling resources from agricultural waste is central to the idea of a circular economy, and has the potential to address the most urgent problems related to nutrients use in the food chain, such as depletion of natural phosphorus reserves, water pollution and waste management. This systematic map examined what evidence exists relating to the effectiveness of ecotechnologies in agriculture for the recovery and reuse of carbon and/or nutrients (nitrogen and phosphorus) in the Baltic Sea region and other comparable boreo-temperate systems.

Methods

We searched for both academic and grey literature. English language searches were performed in 5 bibliographic databases and search platforms, and Google Scholar. Searches in 36 specialist websites were performed in English, Finnish, Polish and Swedish. The searches were restricted to the period 2013 to 2017. Eligibility screening was conducted at two levels: title and abstract (screened concurrently for efficiency) and full text. Meta-data was extracted from eligible studies including bibliographic details, study location, ecotechnology name and description, type of outcome (i.e. recovered or reused carbon and/or nutrients), type of ecotechnology in terms of recovery source, and type of reuse (in terms of the end-product). Findings are presented here narratively and in a searchable database, and are also visualised in a web-based evidence atlas (an interactive geographical information system). In addition, knowledge gaps and clusters have been identified in the evidence base and described in detail.

Results

We found 173 articles studying the effectiveness of 177 ecotechnologies. The majority of eligible articles were in English, originated from bibliographic databases and were published in 2016. Most studies with reported locations, and given our boreo-temperate scope, were conducted in Europe and North America. The three most prevalent ecotechnologies in the evidence base (collectively 40.7%) were; soil amendments, anaerobic digestion and (vermi)composting. Manure was the principal waste source used for recovery of nutrients or carbon, making up 55.4% of the all studies in evidence base, followed by a combination of manure and crop residues (22%). There were 51 studies with 14 ecotechnologies that reported on recovery of carbon and nutrients together, predominantly via (vermi)composting and anaerobic digestion. Only 27 studies focused on reuse of recovered nutrients and carbon through soil amendments.

Conclusions

This systematic map report provides an evidence base that can be useful for researchers and decision-makers in policy and practice working on transformation from linear to circular economy in the agricultural waste sector. Three potential topics for future systematic reviews are: (1) effectiveness of products recovered from different types of agricultural wastes as soil amendments or fertilizers; (2) effectiveness of anaerobic digestion as an ecotechnology used for recovery of nutrients and carbon; (3) effectiveness of composting and/or vermicomposting as ecotechnologies used for recovery of nutrients and carbon.

Keywords

 

Background

The degradation of the water quality of the Baltic Sea is an ongoing problem, despite investments in measures to reduce external inputs of pollutants and nutrients from both diffuse and point sources. Excessive inputs of nutrients coming from the surrounding land are among the primary causes of the Baltic Sea eutrophication. Diffuse sources, of which most originate from agricultural activities, are two dominant riverine pollution pathways for both nitrogen and phosphorus. Recently, there is growing attention on the reuse of carbon, nitrogen and phosphorus from agricultural waste streams. However, to our knowledge, no comprehensive and systematic assessment of ecotechnologies focusing on recovery or reuse of these substances in the agricultural sector is available.

Methods

This map will examine what evidence exists relating to effectiveness of ecotechnologies (here defined as ‘human interventions in socialecological systems in the form of practices and/or biological, physical, and chemical processes designed to minimise harm to the environment and provide services of value to society’) in agriculture for the reuse of carbon and/or nutrients (nitrogen and phosphorus) in the Baltic Sea region and boreo-temperate systems. We will search for both academic and grey literature: English language searches will be performed in 4 bibliographic databases and search platforms, and Google Scholar, while searches in 38 specialist websites will be performed in English, Finnish, Polish and Swedish. The searches will be restricted to the period 2013 to 2017. Eligibility screening will be conducted at two levels: title and abstract (screened concurrently for efficiency) and full text. Meta-data will be extracted from eligible studies including bibliographic details, study location, ecotechnology name and description, type of outcome (i.e. recovered or reused carbon and/or nutrients), type of ecotechnology in terms of recovery source, and type of reuse (in terms of the end-product). Findings will be presented narratively and in a searchable geographically explicit database, visualised in an evidence atlas (an interactive geographical information system). Knowledge gaps and knowledge clusters in the evidence base will be identified and described.