How effective are on-farm mitigation measures for delivering an improved water environment (systematic map)?


Agricultural activities are estimated to contribute 70% of nitrates, 28% of phosphates and 76% of sediments measured in UK rivers. Catchments dominated by agriculture also have elevated levels of pesticides and bacterial pathogens. European member states have a policy commitment to tackle this pollution through the water framework directive. Here we report on the results of a systematic map to investigate and describe the nature and coverage of research pertaining to the effectiveness of 6 on-farm mitigation measures, slurry storage, cover/catch crops, woodland creation; controlled trafficking, subsoiling and vegetated buffer strips for delivering an improved water environment in terms of a reduction in nitrogen (N), phosphorus (P), sediment, pesticides and faecal indicator organisms (FIOs) or pathogens from faecal material.


Research evidence for the effectiveness of the 6 on-farm mitigation measures for delivering an improved water environment (as detailed above) was collated using English language search terms for temperate farming systems in Europe, Canada, New Zealand and northern states of the United States of America. Searches for literature were made from online publication databases, search engines, specialist websites and bibliographies of topic specific reviews. Recognised experts, authors and practitioners were also contacted to identify unpublished literature. Articles were screened for relevance at title, abstract and full text using predefined inclusion criteria set out in an a priori published protocol. All relevant articles were mapped in a searchable database using pre-defined coding and critically appraised for relevance and reliability. Articles reporting the same study were removed. All full text studies without confounding factors were identified and coded for in a separate searchable database.


A total of 718 articles were included in the database. Buffer strips were the most commonly studied intervention followed by cover crops and slurry storage. Little evidence was found for woodland creation and sub-soiling. No studies were found for controlled trafficking on grassland. Nitrogen was most frequently measured, followed by P, sediment, pesticides and FIOs or pathogens from faecal material.


The majority of the evidence collated in this map investigated the effectiveness of buffer strips and cover crops for improving water quality. This evidence was predominantly focussed on reducing N pollution. An evidence gap exists for the impact of cover/catch crops in reducing leaching of pesticides, FIOs and pathogens, and for


Buffer strip, Cover crop, Catch crop, Slurry, Woodland creation, Subsoiling, Controlled trafficking, Water quality, Nitrogen, Phosphorus, Pesticide, Sediment, Faecal indicator organism, Pathogen


Agriculture has intensified over the last 50 years resulting in increased usage of fertilizers and agrochemicals, changes in cropping practices, land drainage and increased stocking rates. In Europe, this has resulted in declines in the quality of soils and waters due to increased run off and water pollution. Fifty percent of nitrates in European rivers are derived from agricultural sources in the UK this value is as high as 70%, where agriculture also contributes to approximately 28% of phosphates and 76% of sediments recorded in rivers. Catchments dominated by agricultural land use have increased levels of pesticides and bacterial pathogens.

European member states have a policy commitment to tackle water pollution through the Water Framework Directive. An analysis of the effectiveness of water pollution mitigation measures should enable decision makers and delivery agencies to better facilitate catchment planning.

The aim of this systematic review is to assess the effectiveness of slurry storage, cover/catch crops, woodland creation, controlled trafficking/break-up of compacted layers and buffer strips, as on farm mitigation measures, for delivering an improved water environment.


The systematic review will consist of a searchable systematic map database for all the named interventions. Where possible, quantitative analysis will be used to assess the effectiveness of interventions.

Electronic databases, the internet, and organisational websites will be searched, and stakeholders will be contacted for studies that investigate the impact of the on-farm mitigation measures on water quality. All studies found will be assessed for suitability for inclusion in the next stage. Inclusion criteria will be based on subject, intervention, comparator and outcome. The details of included studies will be incorporated into the systematic map database, and studies scored for effectiveness of intervention and study design. Where there is suitable data available, meta-analysis will be carried out to test the effectiveness of individual mitigation measures. A report will summarise the evidence, highlight any gaps in the available research, and provide recommendations for future research.