What are the relative risks of mortality and injury for fish during downstream passage at hydroelectric dams in temperate regions? A systematic review
Background
Fish injury and mortality resulting from entrainment and/or impingement during downstream passage over/through hydropower infrastructure has the potential to cause negative effects on fish populations. The primary goal of this systematic review was to address two research questions: (1) What are the consequences of hydroelectric dam fish entrainment and impingement on freshwater fish productivity in temperate regions?; (2) To what extent do various factors like site type, intervention type, and life history characteristics influence the consequences of fish entrainment and impingement?
Methods
The review was conducted using guidelines provided by the Collaboration for Environmental Evidence and examined commercially published and grey literature. All articles found using a systematic search were screened using a priori eligibility criteria at two stages (title and abstract, and full-text, respectively), with consistency checks being performed at each stage. The validity of studies was appraised and data were extracted using tools explicitly designed for this review. A narrative synthesis encompassed all relevant studies and a quantitative synthesis (meta-analysis) was conducted where appropriate.
Review findings
A total of 264 studies from 87 articles were included for critical appraisal and narrative synthesis. Studies were primarily conducted in the United States (93%) on genera in the Salmonidae family (86%). The evidence base did not allow for an evaluation of the consequences of entrainment/impingement on fish productivity per se; therefore, we evaluated the risk of freshwater fish injury and mortality owing to downstream passage through common hydropower infrastructure. Our quantitative synthesis suggested an overall increased risk of injury and immediate mortality from passage through/over hydropower infrastructure. Injury and immediate mortality risk varied among infrastructure types. Bypasses resulted in decreased injury risk relative to controls, whereas turbines and spillways were associated with the highest injury risks relative to controls. Within turbine studies, those conducted in a lab setting were associated with higher injury risk than field-based studies, and studies with longer assessment time periods (≥ 24–48 h) were associated with higher risk than shorter duration assessment periods (< 24 h). Turbines and sluiceways were associated with the highest immediate mortality risk relative to controls. Within turbine studies, lab-based studies had higher mortality risk ratios than field-based studies. Within field studies, Francis turbines resulted in a higher immediate mortality risk than Kaplan turbines relative to controls, and wild sourced fish had a higher immediate mortality risk than hatchery sourced fish in Kaplan turbines. No other associations between effect size and moderators were identified. Taxonomic analyses revealed a significant increased injury and immediate mortality risk relative to controls for genera Alosa (river herring) and Oncorhynchus (Pacific salmonids), and delayed mortality risk for Anguilla (freshwater eels).
Conclusions
Our synthesis suggests that hydropower infrastructure in temperate regions increased the overall risk of freshwater fish injury and immediate mortality relative to controls. The evidence base confirmed that turbines and spillways increase the risk of injury and/or mortality for downstream passing fish compared to controls. Differences in lab- and field-based studies were evident, highlighting the need for further studies to understand the sources of variation among lab- and field-based studies. We were unable to examine delayed mortality, likely due to the lack of consistency in monitoring for post-passage delayed injury and mortality. Our synthesis suggests that bypasses are the most “fish friendly” passage option in terms of reducing fish injury and mortality. To address knowledge gaps, studies are needed that focus on systems outside of North America, on non-salmonid or non-sportfish target species, and on population-level consequences of fish entrainment/impingement.
Keywords
Keyw1, Keyw2
Background
This systematic review will address the need for a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. As the number of dams continues to increase worldwide, so too has concerns for their effects on fish populations. Fish injury and mortality at hydroelectric facilities may have serious consequences for fish populations, which are generally the result of three main sources: (1) fish passage through hydroelectric facilities (i.e., turbines, spillways, sluiceways, and other passage routes) during downstream migration for migratory fish; (2) the entrainment of resident fish; and (3) the impingement of fish (migratory or resident) against screens/trash racks. Most studies on the impacts of entrainment and impingement at hydroelectric facilities on fish have primarily focused on: (1) how fish injury and mortality occurs; and (2) evaluations of the effectiveness of various management strategies used to mitigate harm during downstream passage. Given the contributions of migratory and resident adults and juveniles to fish production, a necessary extension is to evaluate the impacts of fish injury and mortality from hydropower dam entrainment and impingement on fish productivity. Therefore, to ensure the sustainability of fishes dependent on our freshwater ecosystems, a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity is needed.
Methods
This systematic review will search for, compile, summarize and synthesize evidence on the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. Considered studies will include (but not be limited to): (1) those that report a metric related to mortality and injury as an indication of the effect on fish productivity; (2) the change in a metric related to mortality and injury relative to an appropriate control; and (3) articles that scale-up the evaluation to include some estimate of a change in a component of fish productivity (e.g., articles that include an estimate of fish loss from the population due to entrainment/impingement by comparing a metric related to mortality or injury to an estimate of population size or biomass). Only studies where the causal relationship between intervention and outcome is made clear to allow for the effects of entrainment and impingement to be isolated from other potential impacts of hydroelectric power production (e.g., barriers to migration and/or habitat degradation), will be included. The review will use public search engines and specialist websites, and will include both primary and grey literature. Potential effect modifiers will be identified to obtain a better understanding of the factors that are associated with variation in effects among studies, given differences in: (1) site-specific factors (e.g., turbine type, size, power output); (2) methodologies and study designs used to assess impacts; and (3) biological factors (e.g., fish life history stage, body size and morphology). Study quality will be assessed to allow for critical evaluation, including study design, confounding factors and statistical analysis. Data will be compiled into a narrative synthesis and a meta-analysis will be conducted where data availability and quality allow.