What evidence exists on the effect of the main European lowland crop and grassland management practices on biodiversity indicator species groups? A systematic map protocol


The intensification of the agricultural practices in Europe over the last decades has drastically transformed the agroecosystems. The simplification of the landscape, the loss of semi-natural habitats and the application of chemicals on crops are known to have led to biodiversity decline in agricultural landscapes, raising substantial concerns about the loss of essential ecosystem services, such as pollination or pest control. Depending on the location, the scale and the regional context, different indicator species groups (ISGs) are often surveyed to assess the state and trend of biodiversity changes in agroecosystems. Although the high diversity of these ISGs allows a broad overview of the biodiversity, it complicates the interpretation of the results and thus their application. In addition, species diversity metrics are various, from simple species counts to more complex measurements of diversity indices, sometimes with antagonistic responses. Here, to meet the pressing need for synthesis in this complex topic, we will follow a standardized systematic map protocol to collect and summarize the literature reporting the effects of the main European lowland agricultural management practices (AMPs) on a set of ISGs.


Following the systematic evidence synthesis standards, we developed the question to address in the systematic map using the PICO framework. We established a preliminary search string by combining search terms for the categories Population (ISGs), Intervention (AMPs) and Outcome (species diversity), as well as with two additional groups (Environment—to focus on lowland crop and grassland—and Location—to restrict the study area to Europe). We will conduct a comprehensive literature search of relevant peer-reviewed and grey literature using Web of Science and CABI platforms, Google Scholar, specialized websites and through our professional collaborator network. The comprehensiveness of the search will be assessed by comparing the literature collected to a test-list of ninety relevant articles. The repeatability of the literature screening process will be ensured by a list of inclusion/exclusion criteria and inter-reviewer consistency statistical tests. Data extraction will be organized in three complementary tables (article references, study characteristics, species diversity), on which we will perform queries to produce the tables, figures and maps that will compose the systematic map.


Agriculture, Bird, Insect, Land-use intensity, Mammal, Pesticide, Plant diversity, Soil biodiversity, Species richness, Species abundance

In progress