Bridging Indigenous and science-based knowledge in coastal and marine research, monitoring, and management in Canada
Background
Drawing upon multiple types of knowledge (e.g., Indigenous knowledge, local knowledge, science-based knowledge) strengthens the evidence-base for policy advice, decision making, and environmental management. While the benefits of incorporating multiple types of knowledge in environmental research and management are many, doing so has remained a challenge. This systematic map examined the extent, range, and nature of the published literature (i.e., commercially published and grey) that seeks to respectively bridge Indigenous and science-based knowledge in coastal and marine research and management in Canada.
Methods
This systematic map applied standardized search terms across four databases focused on commercially published literature, carefully selected specialist websites, and two web-based search engines. In addition, reference sections of relevant review articles were cross-checked to identify articles that may not have been found using the search strategy. Search results were screened in two sequential stages; (1) at title and abstract; and (2) at full text following a published protocol. All case studies included were coded using a standard questionnaire. A narrative synthesis approach was used to identify trends in the evidence, knowledge gaps, and knowledge clusters.
Results
A total of 62 articles that spanned 71 Canadian case studies were included in the systematic map. Studies across the coastal and marine regions of Inuit Nunangat accounted for the majority of the studies. Whether the focus is on management and decision making or research and monitoring, the predominant ecological scale was at the species level, accounting for over two-thirds of the included studies. There were 24 distinct coastal and marine species of central focus across the studies. Nunavut had the greatest taxonomic coverage as studies conducted to date cover 13 different genera. The predominant methodology employed for combining and/or including Indigenous knowledge was case study design, which accounted for over half of the studies. Other methodologies employed for combining and/or including different ways of knowing included: (i) community-based participatory research; (ii) mixed methods; (iii) ethnography; and (iv) simulation modelling. There are a suite of methods utilized for documenting and translating Indigenous knowledge and an equally diverse tool box of methods used in the collection of scientific data. Over half of the case studies involved Indigenous knowledge systems of the Inuit, while another significant proportion involved Indigenous knowledge systems of First Nations, reflecting 21 unique nations. We found that demographics of knowledge holders were generally not reported in the articles reviewed.
Conclusions
The results of this systematic map provide key insights to inform and improve future research. First, a variety of methodologies and methods are used in these types of studies. Therefore, there is a need to consider in more detail how Indigenous and science-based knowledge systems can be respectively bridged across subjects while also recognizing specific place-based needs of Indigenous communities. Second, the work highlights the need to better report the demographics of knowledge holders. Further inquiry focused on the extent of knowledge co-production and assessing Indigenous participation across different stages of the research process would serve the research community well to improve future research and monitoring in support of, and to strengthen, evidence-based environmental management.
Keywords
Coastal management, Indigenous knowledge systems, Integrative research, Marine management, Monitoring, Systematic map, Canada, Ecological research, Traditional ecological knowledge
Background
The incorporation of multiple types of knowledge (e.g., science, Indigenous knowledge, traditional ecological knowledge) is an important undertaking, which can strengthen the evidence-base for policy advice, decision making, and environmental management. While the benefits of incorporating multiple types of knowledge in environmental research and management are many, successfully doing so has remained a challenge. In response there has been a number of recent reviews that have sought to better understand the what and how, when it comes to bridging Indigenous and science-based knowledge. Yet there continues to be a need for methods, models, and approaches for integrative work. This systematic map seeks to examine the extent, range, and nature of the published literature (i.e., peer-reviewed and grey) that integrates and/or includes Indigenous and science-based knowledge in coastal-marine research, monitoring, or management in Canada. Results from this study can be used to inform new and ongoing research and monitoring efforts and highlight evidence gaps.
Methods
The systematic map will aim to capture all available studies relevant to the question found in the peer-reviewed and grey literature. Accordingly, the search will leverage four databases focused on peer reviewed publications, carefully selected specialist websites, and two web-based search engines. Reference sections of relevant review articles will also be cross-checked to identify articles that were not found using the search strategy. All searches will be conducted in English. Search results will be reviewed in two stages: (1) title and abstract; and (2) full text. All screening decisions will be included in the database. The systematic map will employ a narrative synthesis approach that will include the use of descriptive statistics, tables (including SM database), and figures (including map with the studies geospatially referenced). In addition, an online version of the map and queryable database will be developed similar to other knowledge mobilization tools.